

Date: 01 October 2024 Venue: Hyatt Centric, Janakpuri, New Delhi

FLEXIBLE OPERATIONS IN THERMAL POWER PLANT

Adoption of Flexible Operation for Sustainable Energy Transition: Barriers and Challenges

> Mr Anjan Kumar Sinha Intertek

Adoption of Flexible Operation for Sustainable Energy Transition

BARRIERSAND CHALLENGES

Anjan Kumar Sinha October 1st, 2024

PRESENTATION OUTLINE

INTERTEK IS UNIQUELY POSITIONED TO DELIVER ATIC SOLUTIONS

44,000+ EMPLOYEES

GLOBAL MARKET LEADER IN ASSURANCE

12,000+ AUDITORS, **INSPECTORS, TECHNICAL PERSONNEL** 340,000+ INSPECTIONS AND OTHER TECHNICAL VISITS / YEAR

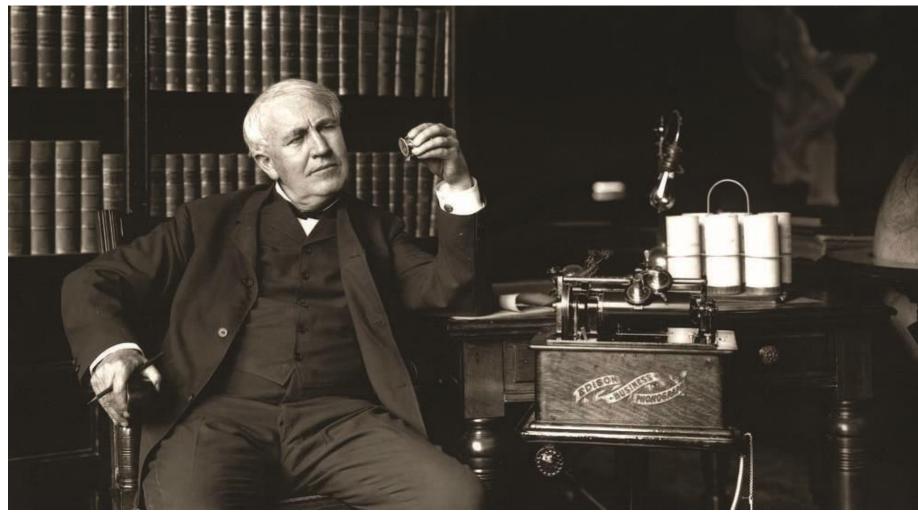
100+ COUNTRIES

GLOBAL MARKET LEADER IN TIC

1,000+ LABS & OFFICES

80+ LANGUAGES

POWER PLANT FLEXIBILITY INTERTEK EXPERIENCE


INTERTEK IS A WORLD LEADER IN THE FIELD OF IDENTIFYING AND ESTIMATING THE COSTS OF FOSSIL PLANT CYCLING.

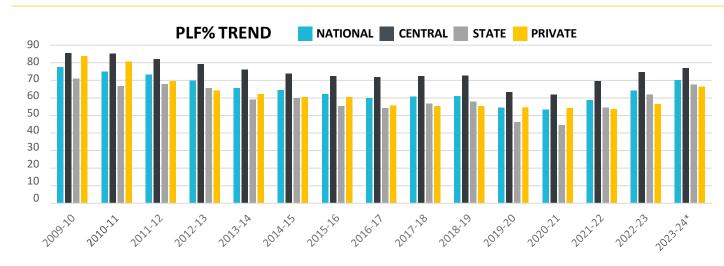
WE ARE ONE OF THE FIRST TO IDENTIFY CYCLING AS A MAJOR COST ISSUE.

- Our staff is highly experienced and well versed with:
 - Power plant component damage mechanisms and failure
 - Component/unit reliability modelling
 - Component aging and impact of fatigue cycling on aging components
 - Capital and O&M accounting and how to associate costs to cycling damage and unit reliability
 - **Relevant industry databases**
 - Statistical modelling, unit commitment and production cost analysis
- We have extensive experience working on utility projects
- We know how to take sparse data and utilize it effectively
- We advise on design improvements, equipment upgrades/replacement and operating process improvements to ensure your plant operates more efficiently and reliably.
- Asset Life Optimization and assessment of future capital and maintenance costs, stranded costs and dispatch

Our Heritage

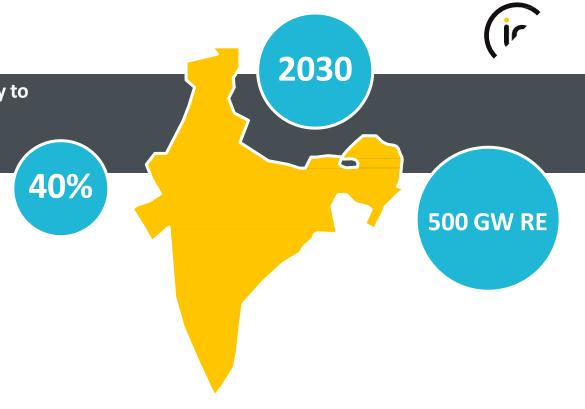
ETL Testing Laboratories founded by Thomas Edison in 1896.

INTERTEK

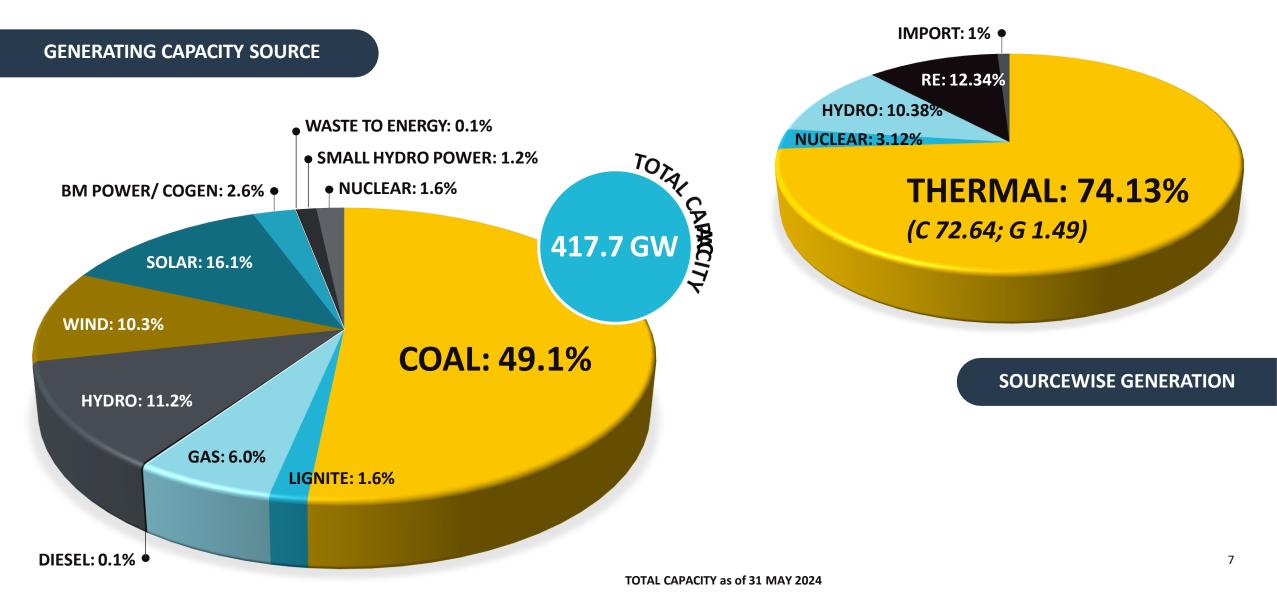

Edison Once Said:

"We are like tenant farmers chopping down the fence around our house for fuel when we should be using natures inexhaustible sources of energy – sun, wind and tide."

In conversation with Henry Ford and Harvey Firestone (1931); as quoted in Uncommon Friends: Life with Thomas Edison, Henry Ford, Harvey Firestone, Alexis Carrel & Charles Lindbergh (1987) by James Newton, p. 31


BACKGROUND

- India's pledge to increase the share of non-fossil fuels-based electricity to 0 40 percent by 2030
- 500 GW RE by 2030
- Coal in India is increasingly needed to flexible and play a greener role
- Inadequacy of other balancing resources
- Coal is the mainstay of power generation in India
- Fuel economics-Non-Pit head stations will have costlier fuel
- Tightening environmental legislation
- Transition to electricity market mechanisms markets will force to operate more efficiently, even during flexible operation



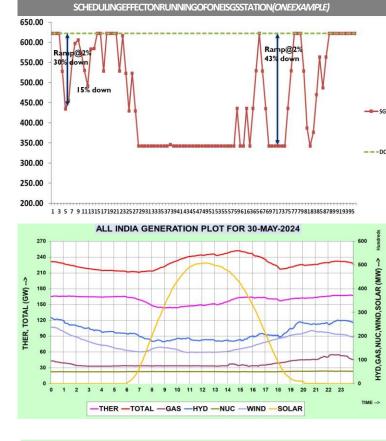
8.87 7.96 5.19 0.95 5.35 -0.52 8.84 5.23 9.14 4.46 5.59 7.56 2019-20 2017-18 2018-19 2016-17 2009-10 2010-11 2011-12 012-13 013-14 A 15 16 6

COAL HAS BEEN THE MAINSTAY OF THE POWER GENERATION IN INDIA

COAL- CRUCIAL FOR SUSTAINABLE ENERGY

•

As extreme climate events are witnessed, the electricity demands continue to grow rapidly.

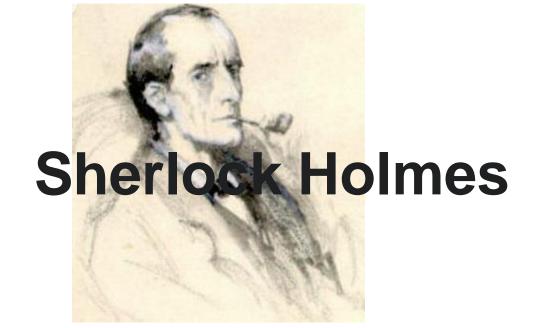

On 29th May,2024 the maximum temperature of 52.9^o C was recorded at Delhi's Mungespur

The peak demand scaled at 250 GW on 30th May.

Coal will be a significant resource required for sustainable energy future in India in the scenario of Rapid demand growth and increased VRE additions .

- The energy transition towards sustainability is massive and two-fold:
 - Rapid growth in demand
 - Rapid deployment of RE (500 GW by 2030)
- Sustainability:
 - Energy Security
 - Affordability
 - Environmental sustainability
- Thermal power plants will be under extreme pressure to deliver all the aspects of the sustainability.
- There will be a shift in the operating regimes- calling for revisions in operating strategies and maintenance practices.
- However, the fundamentals of power generation must not be forgotten at every stage of generation:
 - Combustion optimization at low loads
 - Condensate management
 - Steam parameters
 - Metal temperatures
 - Equipment health monitoring

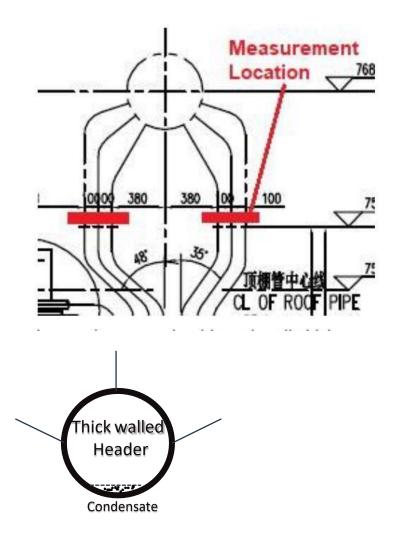
AWARENESS -FLEXIBLE OPERATION

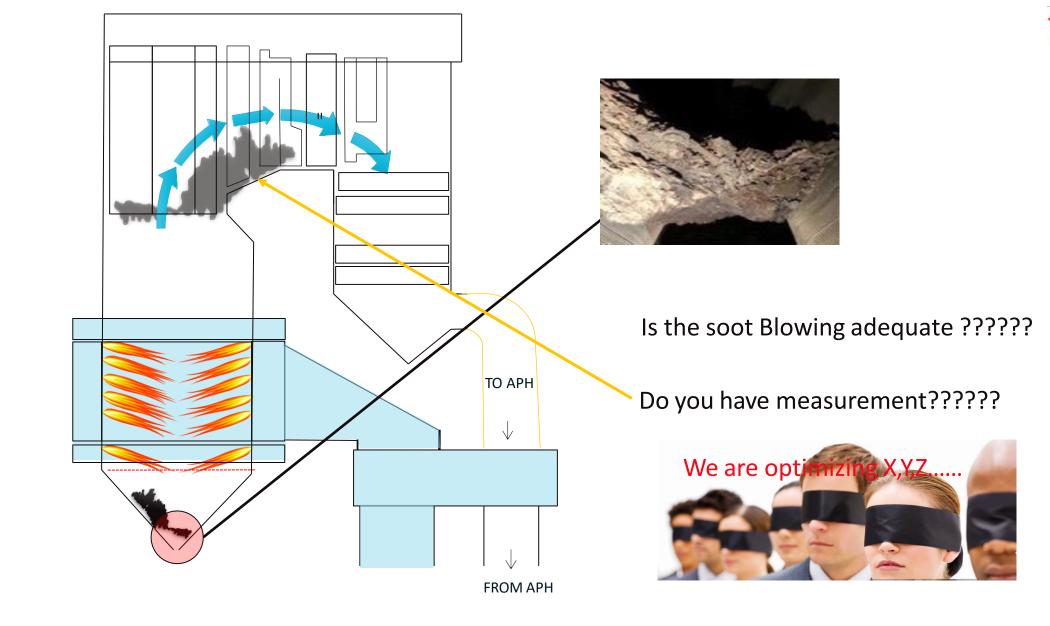

- Any unit can be Flexed
- Flexing with lack of awareness, can be **DISASTROUS**
- Cycling causes DAMAGE and when equipment degrades, performance degrades
- Damage not immediate but ACCUMULATED and not easy to quantify
- By the time symptoms of damage is visible it may have become VERY COSTLY to correct
- Flexible operation is a difficult mode of operation and even the most conservative approach will increase plant O&M COSTS along with per MW variable costs
- Plants that can operate flexibly to meet market conditions while minimizing the financial impact of operating in this environment will continue to be dispatched at least for the near future
- Investments in **RETROFITS** can enhance the flexibility to a large extent
- Revisiting the **O&M PROCEDURES, TRAINING & DIGITALIZATION** support can enhance flexibilization

COMPREHENSIVE APPROACH NEEDED INVOLVING PEOPLE, PROCESS & TECHNOLOGY

ir

Data, data, data.....

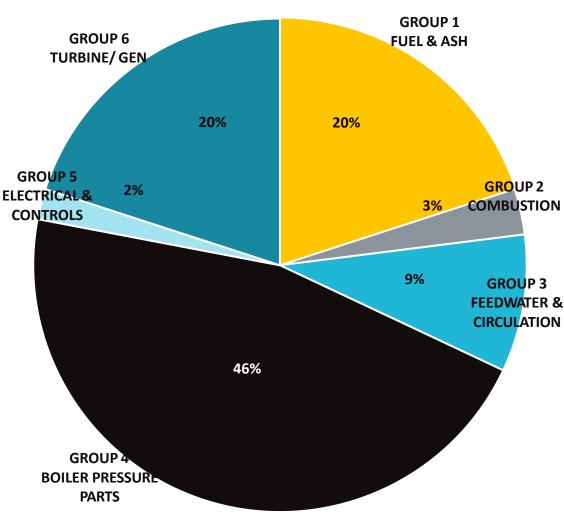

INSTRUMENTATION


- FEGT
- Coal Pipe temp, velocity, mass flow
- SA Flow(individual burner)
- Drain Flow, temperatures
- Coal Analyser

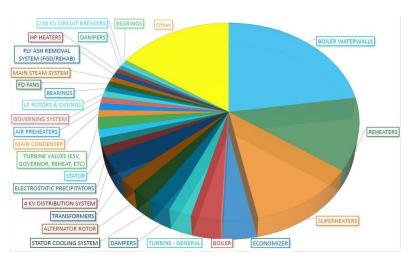
Correct Locations is important

Example- 1. How correct is the excess O2 measurement with air-in-leakages

2. Inadequate thermocouples at proper locations

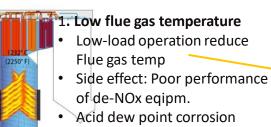

ndo-German nergy Forum

UNDERSTANDING THE DISTRIBUTION OF TOTAL COSTS OF DAMAGE


(ir

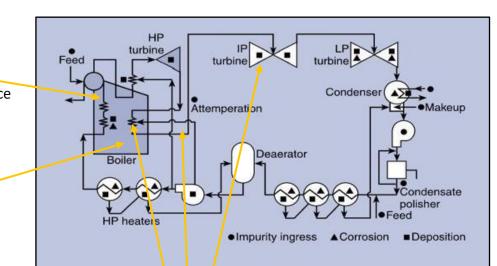
NECESSARY to tailor the Overhauling & Maintenance Intervals of Units supported by Data

- Analysis of Component-Wise Cost Data is **IMPORTANT**
- Predictive Tools
- Estimated Weekly Damages
- EFOR & Life Management Actions
- Intertek COSTCOM, AWARE, EPRI, GE ...



ANNUAL COST OF CYCLING DISTRIBUTION

REDUCING MIN LOAD-KEY CHALLENGES



2.Unstable Flame

Maintaining Flame stability is more challenging during low-load operation

- Unbalances A/F distribution
- Deviated A/F ratio
- Coal Quality

3 Thermal stresses

- 5. Reduced load control options
- Reduced steam flow, condensate volume

6. Distorted heat transfer

- Unclean surface
- Slagging

7. Maintaining Chemistry becomes challenging

RAMP ACHIEVED DURING PILOT TESTS

Target

200MW

3%/min

3%/min

1%/min

1%/min

Dadri TPS, (NTPC), Dist. Gautambudh Nagar, UP

Test Date: 21 & 22/06/2018 Unit No.: 6 Unit Capacity: 500MW Following tests were conducted:

Test

a. Minimum Load Test at 40%

- Ramp Up Test b.
- Ramp Down Test C.
- Ramp Up Test d.
- e. Ramp Down Test

~ 1.5%/min ~ 0.86%/min ~ 0.5%/min

Achieved

~ 1.5%/min

200MW

The results are based on IGEF report dated 28/09/2018.

Sagardighi TPS, (WBPDCL), Dist. Musheerabad, West Bengal

:	
Target	Achieved
200MW	200MW
3%/min	~ 1.6%/min
3%/min	~ 2.6%/min
1%/min	~ 1.1%/min
1%/min	~ 0.67%/min
	Target 200MW 3%/min 3%/min 1%/min

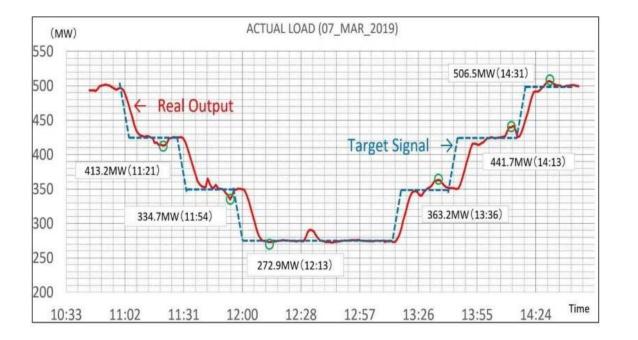
Note: No pilot study has been done on a Super-critical Unit In India

Intertek Engineering Consulting Engineering | Failure Analysis | Technology

Mouda TPS, (NTPC), Dist. Nagpur, Maharashtra

Test	Target	Achieved
a. Ramp up Test (3%)	3%/min	~ 2.04%/min
b. Ramp down Test (3%)	3%/min	~ 2.01%/min
c. Ramp up Test (1%)	1%/min	~ 1.04%/min
d. Ramp down Test (1%)	1%/min	~ 0.92%/min

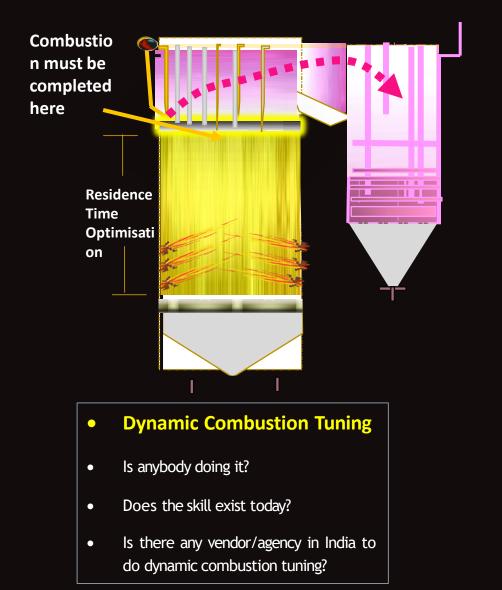
RBTPS, (Tata Power, DVC JV), DIST. Dhanbad, Jharkhand


210 MW - 225 MW

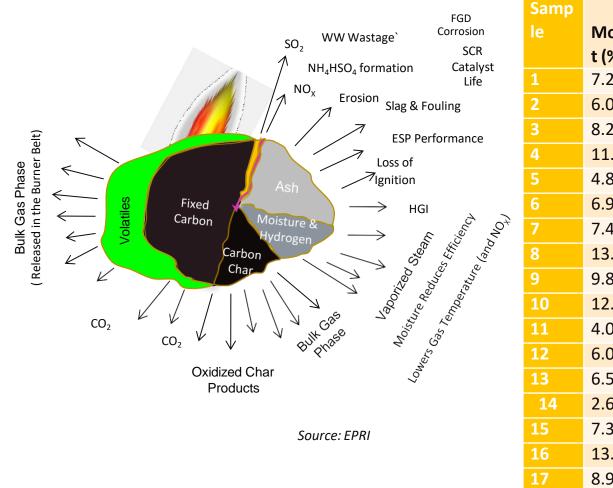
Test Date:	22/07/2021 to	27/07/2021	
Unit No:	2		
Unit Capacity:	525MW		
Following tests	were conducte	d:	
Test		Target	Achieved
Minimum Load	Гest (40%)	210MW	210MW
			190MW (36%)*
			*achieved for short
			duration of 10min.
Ramp Up/Down	Test	1%/min	
The ramp rates	achieved were	as follows:	
	Upwa	rd direction	Downward direction
290 MW - 525 I	MW 0.95%	/min	1.52%/min
MW - 290 M	WW do)	0.95%/min

do

0.38%/min


PILOT RESULTS

CEA: 70-100% Load - 3% ramp 55-70% load - 2% Ramp Below 55% load - 1% Ramp


Ramp rate does not include the time to take mills Or else partly loaded mills need to be kept in service Any mill must not be loaded below 50%

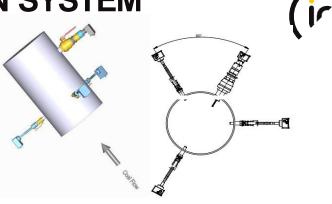
COMBUSTION OPTIMISATION

Coal fineness Balancing of Coal flow across the coal pipes Fuel/Air ratio, Combustion air Furnace exit gas temperature Bottom Ash & Fly Ash Unburnt Flue gas temperature and excess air stratification Flue gas oxygen /Excess air level Coal mill inlet/outlet temperature Primary Air header pressure Pulverized coal flow velocity /Temperature of coal pipes Windbox pressure Burner Tilt Flame scanners Selection of burner

COAL QUALITY IMPACT ON PERFORMANCE

	e No: S	amples	collecte	d from	Coal Sta	tions
Samp le	Mois t (%)	VM (%)	Ash (%)	FC (%)	HGI	GCV
1	7.2	25.3	36.36	31.14	68.54	3795
2	6.05	25.25	29.92	38.78	59.22	4058
3	8.24	18.34	45.5	27.92	65.2	2869
4	11.45	26.06	38.92	23.57	62.5	3264
5	4.86	31.82	30.02	33.3	58.62	4623
6	6.99	27.79	35.21	30.01	76.09	3871
7	7.41	29.96	32.49	30.14	61.23	4821
8	13.28	20.54	34.46	31.72	48.69	4014
9	9.81	23.45	38.38	28.36	65.93	4268
10	12.96	22.74	46.51	17.79	57.49	2636
11	4.04	28.97	24.26	42.73	60.37	5003
12	6.08	24.01	43.85	26.06	76.65	3692
13	6.58	27.01	38.6	27.81	70.32	3962
14	2.66	22.75	53.22	21.37	57.28	3645
15	7.39	31.05	32.28	29.28	52.33	4538
16	13.6	18.71	46.97	20.72	59.22	2683
17	8.91	20.89	44.67	25.53	63.57	3066
18	4.79	22.11	41.77	31.33	62	3937

DYNAMIC COAL FLOW MONITORING AND MANIPULATION SYSTEM


Trending and manipulation Based on Real time measurements

- Coal Mass Flow in each pipe
- Coal Roping Area identification
- Coal Temperature in each pipe
- Coal Velocity in each pipe
- Coal Flow Balancing
- DP across Variable Orifice
- Automatic Coal Pipe Balancing by Variable Orifice (Future proposal)

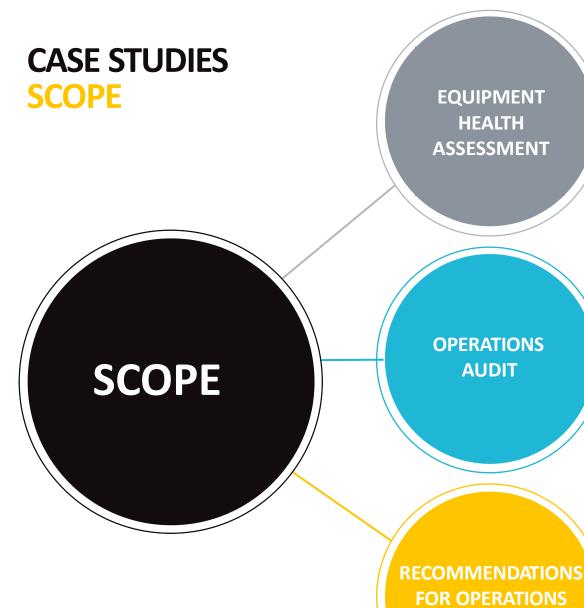
- 3 Mass Flow sensors (microwave based) placed at 120^o apart)
 - Measures mass flow & indicates coal roping.
- Velocity sensors(Electrostatic based) placed 500mm above the mass flow sensors.
 - Measures coal particle velocity and temperature.
- Monitoring software integrated with system

STUDIES & PILOT TESTS FOR FLEXIBLE OPERATION

(ir

To prepare **units for flexible operation**, test runs were conducted under the directions of MOP and supported by USAID, IGEF, and Jcoal. Important stakeholders included: OEMs (*GE, Siemens, BHEL*), Intertek, VGB, Engie Lab, NTPC, GSECL, KPCL, DVC, Tata Power,

WBPDCL & UPPDCL.

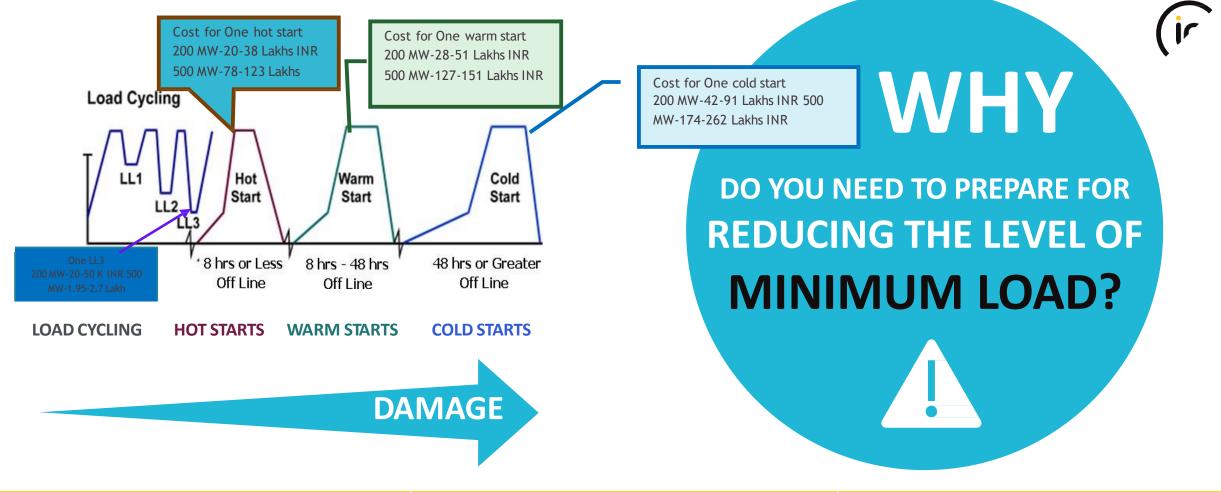

PILOT LOCATIONS

- NTPC Jhajjar Power Plant (500 MW) Jhajjar District, Haryana, India at 28.4892° N & 76.3557° E
- NTPC Ramagundam Power Plant (200MW)
 Peddapalli District, Telangana, India at 18.7589° N & 79.4555° E
- NTPC Dadri (200 & 500MW)
 UP. India at 28.5985° N & 77.6087° E
- NTPC Simhadr (500 MW) Visakhapatnam, Andhra Pradesh, India at 17.5961° N & 83.0875° E

Recent Studies(2024) - 4 Units(3 super-critical)

Unit A1 | 685 MW Supercritical Coal Unit | Commissioned in 2014 Unit A2 | 685 MW Supercritical Coal Unit | Commissioned in 2016 Unit V1 | 660 MW Supercritical Coal Unit | Commissioned in 2013 Unit D3 | 210 MW Subcritical Coal Unit | Commissioned in 1999

- GSECL Ukai TPP (200 & 500 MW)
 Vagda, Gujarat at 21.2121 ° N & 73.5606° E
- Anpara A (500MW)
 Sonbhadra District, Uttar Pradesh, India at 24.2049° N & 82.7832° E
- Bellary (500MW)
 Karnataka, India at 15° 11′ 31.5″ N & 76° 43′ 03.8″ E
- Tata Maithon (500MW)
 Jharkhand, India at 23° 49′ 13″ N & 86° 45′ 36″ E
- DVC, Andal (500MW)
 WB at 23° 34' 55.61" N & 87° 11' 8.62" E


FOR OPERATIONS IMPROVEMENTS

- Is there any damage?
- What are the damage mechanisms?
- How fast is the damage progressing?
- When will the damage cause failures?
- Are there any low probability but high impact risks?
- Cost of cycling
- Operating Procedures Review
- Startup & Shutdown, Min Load, Ramps
- Protocols (Standing Orders)
- Generation Deficiencies & Incidents Documentation/ Reporting
- Training
- Performance Tests vs Design
- Review of Generation Statistics (FOR, EFOR, Availability, etc.)
- Maintenance & Inspection Schedules, Predictive Maintenance Tools, Spare Usage, SOW
- Digitalization Maturity
- Usage of Predictive & Condition Assessment Tools
- Design Review & Requirement of Retrofits
- Recommendations for Capital Projects To Reduce Cyclic Damage
- Review & Critique Cycling Cost Methods Used By Utility
- Development of Improved Cost Estimates
- Recommendations on use of Improved Cycling Cost Information in System Operations & Planning

TEST RUNS-COMMON ISSUES

(ir

- Unoptimized Combustion at low loads
- In all the test runs conducted, it was observed that CONTROL LOOPS were not tuned for low loads
- Burner tilts were on MANUAL key variable having significant influence on steam temperature parameter control
- More number of mills than required were kept in service to take care of the exigencies of MILL TRIPPING
- PRIMARY AIR FLOW maintained higher than anticipated values as mills were operated at full mill air flow irrespective of the mill loading
- SECONDARY AIR FLOW is very much less than the desired level resulting in no or low windbox dP at part loads
- WB PRESSURE was improved by closing the secondary air dampers of the mills that were not in service & optimising the primary air flow
- STEAM COIL APH was not available/not used regularly
- SLIDING PRESSURE was in service needed modification
- The PARTIAL STEAMING OF ECO occurred at low load which can be allowed only for a short time
- Increase in SH TEMPERATURE during load ramping & High SH SPRAY
- Jerky operation of **FEED WATER FLOW** on opening of the recirculation valves at low load
- The analysis of DIRTY AIR FLOW results reveals that there is a good degree of imbalance in coal flow across the pipes at low load

UNIT SIZE	200-250 MW	500 MW
Load Following Cost (US\$)	260-650	2500-3500
Hot Start Cost (US\$)	26k-50k	100k-159k
Warm Start Cost (US\$)	36k-66k	165k-200k
Cold Start Cost (US\$)	54k-118k	225k-340k

COMPENSATION FOR 40% LOAD...

MARKET PRODUCTS

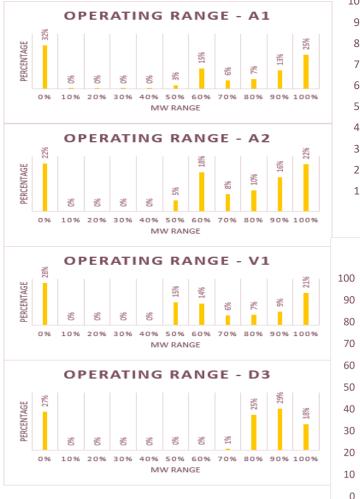
1. Capital Expenditure(One time) to be recovered in 5 years (through tariff)

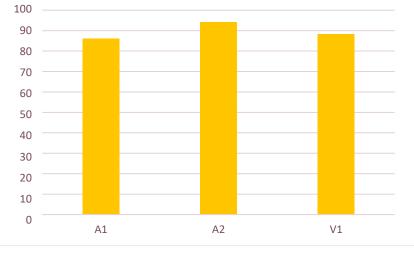
2. O&M Costs For low load operation for 85% days

Capacity (MW)	Loading (%)	Increase in O&M (%)	Proposed increase in O&M cost (Rs Cr.)	
	<55 to 50	9.00	6.58	
200	<50 to 45	14.00	10.23	
	<45 to 40	20.00	14.62	
	<55 to 50	9.00	11.23	
500	<50 to 45	14.00	17.47	
	<45 to 40	20.00	24.97	
Sec. 2. Starting	<55 to 50	9.00	13.34	
660	<50 to 45	14.00	20.76	
	<45 to 40	20.00	29.66	
	<55 to 50	9.00	14.55	
800	<50 to 45	14.00	22.64	
	<45 to 40	20.00	32.35	

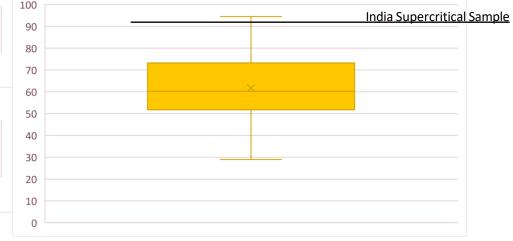
3.Variable Charges

Capacity (MW)	Loading (%)	Net Heat Rate increase (%)	Variable Tariff increase (%) at coal price Rs 2000/ton	Variable Tariff increase (%) at coal price Rs 3300/ton	Proposed variable Tariff increase (%)
	<55-50	10.00	9.88	9.94	9.91
200	<50-45	13.00	12.84	12.92	12.88
	<45-40	16.00	15.81	15.90	15.86
100	<55-50	10.90	10.76	10.83	10.80
500	<50-45	13.60	13.44	13.51	13.48
	<45-40	16.00	15.81	15.90	15.86
	<55-50	8.70	8.59	8.64	8.62
660	<50-45	11.90	11.75	11.82	11.79
	<45-40	14.60	14.42	14.50	14.46
	<55-50	8.60	8.49	8.54	8.52
800	<50-45	12.00	11.84	11.92	11.88
	<45-40	15.00	14.81	14.90	14.86

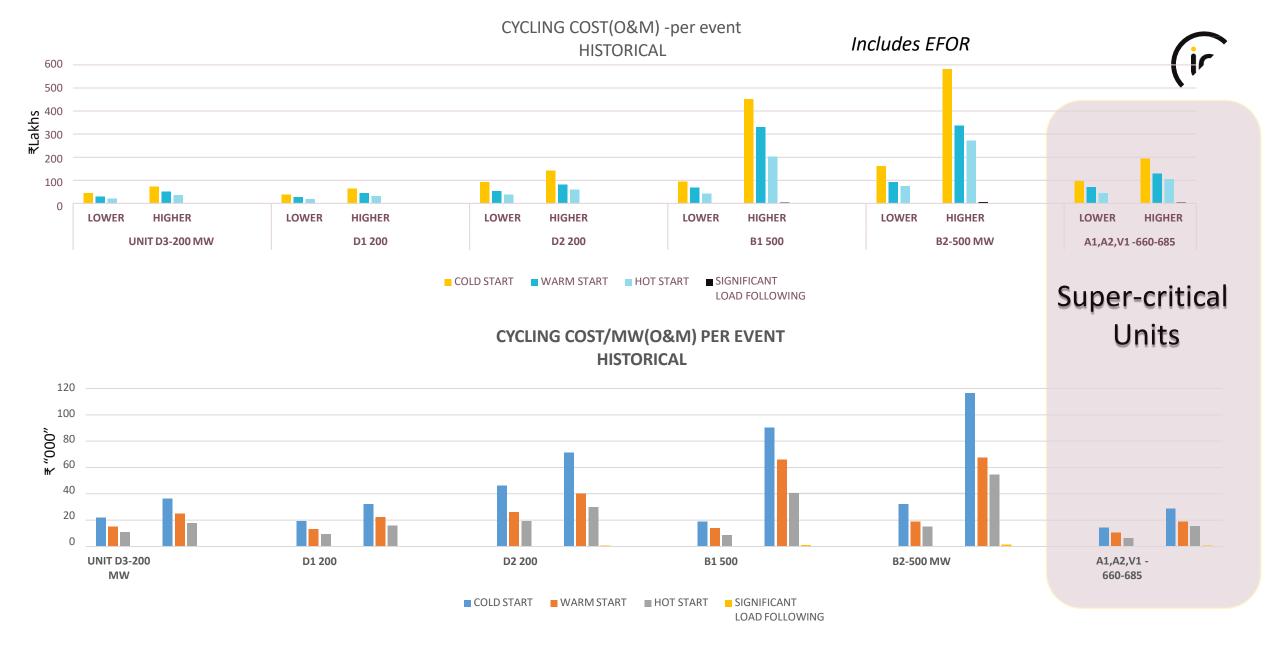

QUESTIONS?- to Utilities, Policy makers, regulators, OEMs


- Is the compensation adequate or overcompensated?
- Two-shifting & start-up?
- Do you understand the costs?
- Do you see any risk?
- Can you see the hidden opportunities?
- Have you formulated any business strategy for flexible operation?. Do you have an institutional mechanism to deal with flexible operation?
- Does this mechanism help in reduction of overall system level costs and risks?
- What will be the business model (for flexing) for the market participants(operating in energy markets) and Non- ISGS units?

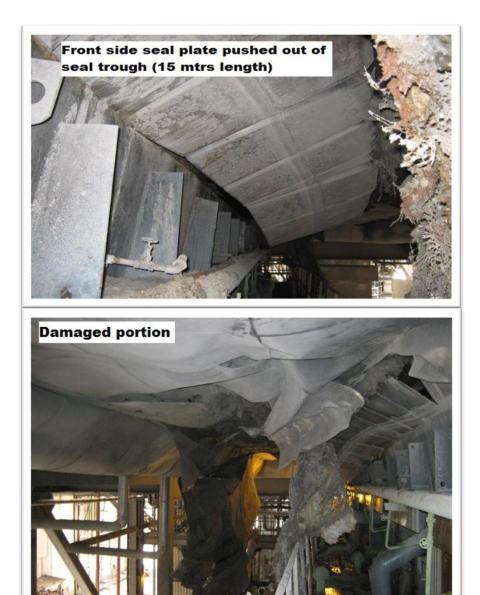
Can we reduce the burden of the consumers through a better policy based on analysis or simply pass on the burden and all inefficiencies on them?


4 Others (Oil & EFOR)

OPERATING MODE/ANNUAL DAMAGE



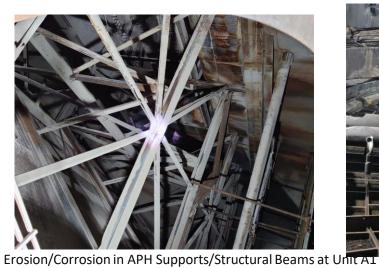
Annual EHS - Supercritical Coal Units in N. America

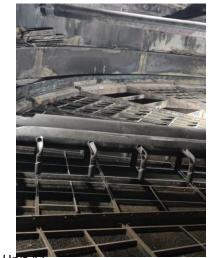

Annual Damage - Supercritical Units

- High exhaust hood temperatures
- High steam seal temperatures
- Rate of change of metal temperatures
- Solid particle erosion
- Main steam and reheat steam temperature differential.
- Internal corrosion and oxygen pitting of waterwall tubes.
- Higher rates of internal corrosion of steam tubing due to increased exfoliation
- Accelerated creep damage of steam (superheater and reheater) tubing.
- Chemistry upsets/excursions resulting in hydrogen damage.
- Fatigue corrosion due to cycling stresses on waterwall tubes.
- Furnace subcooling resulting in external tube failures.
- Overheating during low load operation by improper burner configuration
- Steam line quenching
- Higher risk of furnace explosion due to low turn down of fuel capabilities
- Economizer inlet header thermal fatigue cracking
- Combustion Issues/ Air/Fuel distribution issues

SAFETY

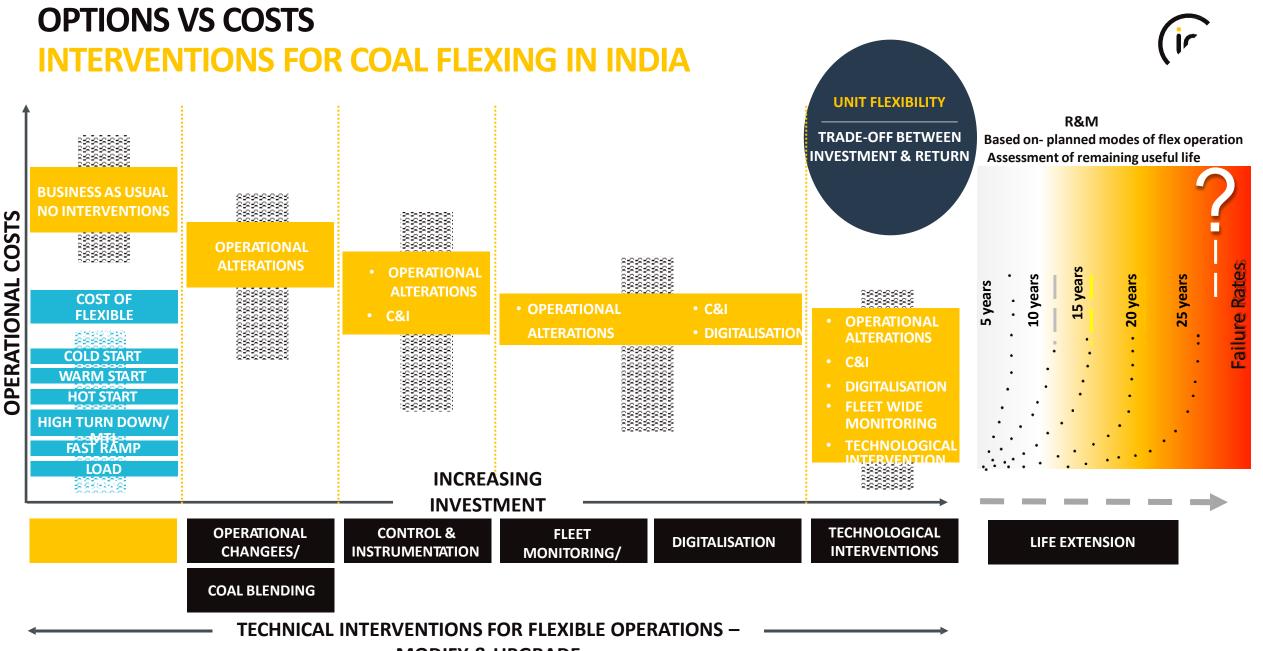
Damages to the "S" panel.


Bow in horizontal tubes of front S panel.



UNIT A2

Ash Accumulation in the Windbox


Ash Accumulation in the LTSH

APH Corrosion

Burner Damage

MODIFY & UPGRADE

QUESTIONS?

WHAT IS STOPPING YOU FROM BEING FLEXIBLE?

ARE YOU SURE......? RETHINK, IT IS FOR THE GREEN CAUSE.....

ANJAN KUMAR SINHA

+91 96509 92971

anjan.sinha@intertek.com

intertek.com

THANKING YOU! ON BEHALF OF

Council of Enviro Excellence