

Date: 01 October 2024 Venue: Hyatt Centric, Janakpuri, New Delhi

FLEXIBLE OPERATIONS IN THERMAL POWER PLANT

Flexibilisation Measures & Retrofit Of Thermal Power Plant Assets

Mr Prabhat Kumar Sinha Sr Consult - Ex NTPC

Flexibilisation Measures & Retrofit Of Thermal Power Plant Assets

- ANNUAL CONFERENCE ON FLEXIBLE OPERATION OF THERMAL PLANTS 2024

COUNCIL OF ENVIRO EXCELLENCE

PRABHAT SINHA , SR CONSULTANT

Outline

- Present Scenario Of Power Generation
- Impact Of Flexible Operation/Cyclic Loading
- R&M/Retrofit Needs & Benefits For Flexible Operation
- Implementation Strategies
- Some Case Studies Of Successful R&M

Power Generation- Imp Facts In India

As on Mar 24 Installed capacity was 441.9 GW :

- Renewable Contribution 190.5 GW 43 %
- Fossil Fuel Contribution 211.8 GW 50.7%
- Other Contribution 42 GW

Projected Installed capacity of Power Gen as per "National electricity Plan-May 2023" is app 900 GW by 2032.

- Renewable will be app 615 GW 69.4%
- Fossil Fuel will be app 285 GW 30.6% (App 90% will be Coal/Lignite Based Plants)

With Renewable Power Penetration , Thermal Generation is Ramping Down to app 60% of capacity

With Further Penetration of Renewable Power Thermal Generation may Ramp Down to avg 40 % Tech Minimum of Capacity

Cyclic Loading of Thermal Plant touching ~ 40% will aggravate Asset Degradation

PRABHAT SINHA TALKS -RETROFIT FOR FLEXIBILISATION

Source Of Data- CEA, PIB GO3

Flexibilisation Measures In Nut Shell

•Faster Load Adjustment - Increasing ramp rates and enabling low-load operation.

•Reducing Start-Up Time - Quick-start technologies and optimized boiler systems.

• Improving Efficiency at Partial Loads -Retrofitting equipment and using advanced control systems.

•Lowering Minimum Technical Load -Allowing plants to run safely at lower outputs. •Enhancing Fuel Flexibility - Adapting to multiple fuel types, including cleaner options.

•Adjusting Emission Controls - Ensuring pollution controls function at different load levels.

•Using Digital Tools - Employing real-time monitoring and AI for predictive maintenance and operational optimization.

TPPs In work Today ...

Some Key Control Systems In Place :

- Distributed Control System
- BMS/FSSS
- ATRS

They have key functions to -

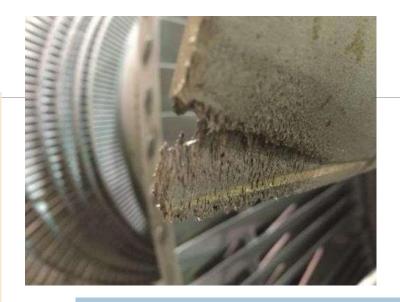
- Control
- Protect
- Interact
- Communicate

In a close or Open loop within the given loops like Boiler , Turbine , CHP, Off Site etc

They have Limitations to interact and provide key information to operator in Totality , so manual dependences

Impact Of Cyclic Loading

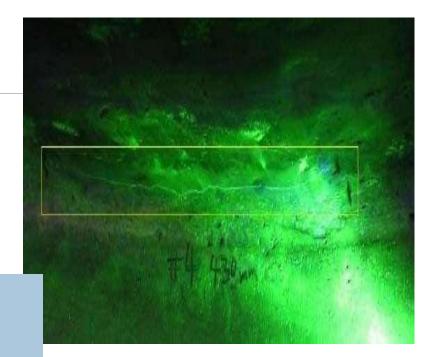
- Increased Start-Up & Shutdown Cycles and thermal stresses during load changes will cause accelerated wear and tear.
- Thermal cycling Transients added with plant condition will contribute to fatigue causing rapid degradation of all high temp system/equipment viz Boiler, Turbine, Pipelines, Valves, Dampers etc.
- Quick response for corrective actions is having human interface


Asset Degradation Adversely Affect Flexibilisation

STEAM TURBINE / BOILER DAMAGE Manifestations

- High Cycle Fatigue Vibration
- Creep Steady stress at elevated temperatures
- Environmental Stress Corrosion Cracking (SCC)
- Low Cycle Fatigue Thermal and mechanical Cycling
- Foreign Object Damage Flow path liberation
- *Embittlement* Time and temperature exposure
- Erosion Water droplet and solid particle
- Rubbing Axial and Radial
- Event Driven Water Induction, Overspeed

Minimum Load Regime


- Primary Failure Mechanisms
 - High cycle fatigue
 - Low Cycle Fatigue
 - Solid particle and water droplet erosion
- Secondary Failure Mechanisms
 - Stress corrosion cracking

- Operational Manifestations:
 - Turbine differential expansion
 - Increased vibration levels
 - Turbine water induction
 - Boiler issues
 - Overheating at LP exhaust

Cyclic Load Regime

- Primary Failure Mechanisms
 - Low cycle fatigue cracking of rotor, blades, casing, generator
 - Rotor bow and rubbing
 - Solid particle erosion
- Secondary Failure Mechanisms
 - High cycle fatigue cracking
 - Operational Concern
 - Vibration
 - Turbine Water Induction
 - Differential Expension
 - Boiler Issues
 - Overspeed

Other Reasons of Performance Losses

IMPORTANT TRENDS IN THERMAL PLANT - PERFORMANCE DETERIORATION

Age Structure	Indicates the share of ageing plants / technology obsolescence in the total generation mix of the country	
Heat Rate	Combined effect of Heat Rate and Auxiliary consumption	
Auxiliary Consumption	indicates the net plant efficiency. Lower the combined effect of the two, lower will be the fuel cost/ cost of power generation.	
Plant Availability, Forced Outage & PLF	Indicates the quantum and reliability of energy availability. Better the plant availability higher is the generation / reliability of generation.	

Outline

- Present Scenario Of Power Generation
- Impact Of Flexible Operation/Cyclic Loading
- R&M/Retrofit Needs & Benefits For Flexible Operation
- Implementation Strategies
- Some Case Studies Of Successful R&M

R&M/LE of Thermal Plants In Past & Now -

R&M programme was started from 7th Five Year Plan (1985-90)

- 34 nos. of TPS / 163 units / 13570 MW
- Benefits -
 - PLF 46% to 56% (Avg Rise 10%)

•Electricity Gen Rise - 7k to 10k MU(Avg Rise 40%) P/A

•Up To 11th Five Year Plan (2012-17) R&M/LE of app 610 Units with 77500 MW were successfully done under different plans under various scheme

•Estimated rise in Generation was 40k MU/PA and 6700 MW equivalent addition was done

Why It did not work Consistently :

- Scope Identification
- Surprises during execution
- Completion Period Extension
- Cost Escalation
- Weak framework of Contract
- Project management

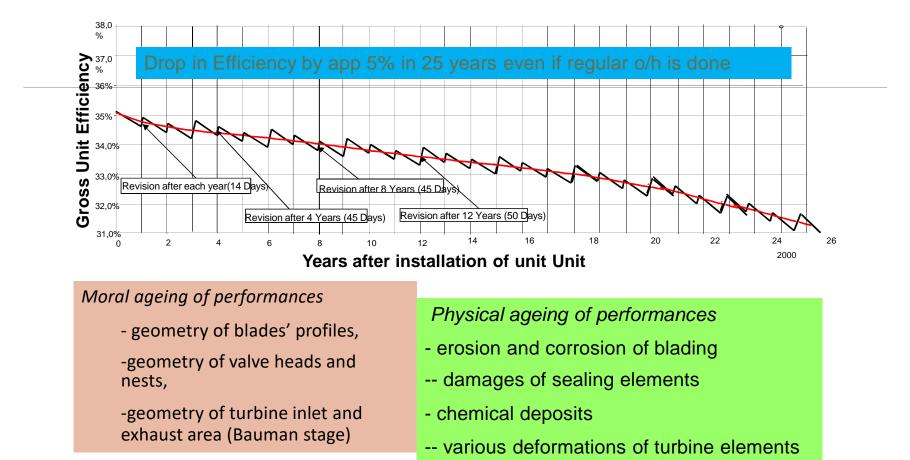
Objective of R&M Now :

- Operational Improvement
- Life Extension with/Without Uprating
- Compliance of Environmental Norms
- Flexible Operation for Renewal Integration
- Bio Mass Co Firing Capability

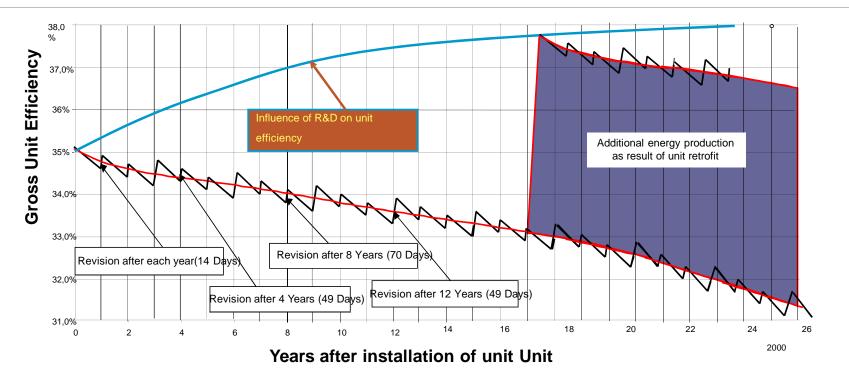
R&M Concept is Powerful for Improvement of the Performance

30-09-2024

PRABHAT SINHA TALKS - RETROFIT FOR FLEXIBILISATION


12

Objective & Benefits Of R&M/Retrofit For Flexible Operation


- Necessary Corrections For Flexible operation and Performance Improvement
- Control up gradation & optimization
- Ramp rate improvement
- Upgrade with modified/augmented latest technology equipment/components/ systems

- Reduction in maintenance requirements, ease of maintenance and enhanced efficiency.
- Environment norm Compliance
- Life Enhancement
- Safety Compliances

Simulation of Unit efficiency ageing

Benefits for R&M

Simulation of Unit Restoration

30-09-2024

National R&M Plans To augment Flexible Operation

R&M Plan By CEA For Old Units :

Eligible Units for R&M of 20+

- Till Dec 2023
 - Fossil Fuel Based 40 GW
 - No Of Units 152
 - Unit Sizes 195 MW to 500 MW

•Till Dec 2030 - Add 72 Units - 26GW , Unit Capacity Up To 660 MW For Meeting Flexiblisaton Targets by 2032 :

- R&M Plan notified by CEA For Retrofit/R&M of plants in phased manners from March 24 to Dec 2030 :
 - Total Unit 493
 - Capacity 196.5 GW
 - Units Sizes 110 to 500 MW
- In Staggered Manner Each Unit Shut Down for 1.5 Months

Outline

- Present Scenario Of Power Generation
- Impact Of Flexible Operation/Cyclic Loading
- •R&M/Retrofit Needs & Benefits For Flexible Operation
- Implementation Strategies
- Some Case Studies Of Successful R&M

Contracting Basis

R&M is not New Build

True 'EPC' is not applicable for R&M

- Unknown scope at time of bid, hence unknown schedule
- The lowest bid may not adequately address true risk profile
- Serious bids may well be priced out.

Fixed Price and Schedule for a Fixed Scope

- The priced scope needs to be fully defined before a price and schedule can be given for it.
- Contract needs to define how to handle emergent work (i.e. how to handle the surprises)

New Build Specification is Not Appropriate

Preparatory Analysis

- Plant Risk Assessment
- Information Gathering
- Comprehensive Health Assessment

Risk Management

- Must start well in advance of bid documentation Prep
- Preparation is Key
- Plant Condition
- Accurate and recent process data
- Accurate, as current drawings
- Interaction with suppliers
- Beneficial both to contractor and the utility
- Risks managed before bid For -
 - \rightarrow Better Price
 - → Better Guarantees
 - \rightarrow Successful execution

Information Gathering

Potentially Available Data

- Full set of up to date P&ID's
- O&M manuals, Drawings & Docs ,
- Current Operating Data including current, accurate boiler process flow (diagrams, fuel analysis, air flows, gas flows, temperatures, pressures, emissions etc.)
- Service History & Information regarding changes made at site
- Planned Outage Schedule

Some Measurements and inspections can only be taken with the unit offline

- Remaining Life Assessment and Condition assessment
- Steam Path Audit
- Component Internal measurements (eg. Turbine internal interfaces, condenser neck, boiler pressure parts)
- Fitting of some performance testing equipment

Laser Scanning

- As current equipment layout
- 3-D Access and Egress planning
- Pipe and cable tray as current routing
- Turbine hood and condenser neck measurement

Comprehensive Health Assessment (CHA)

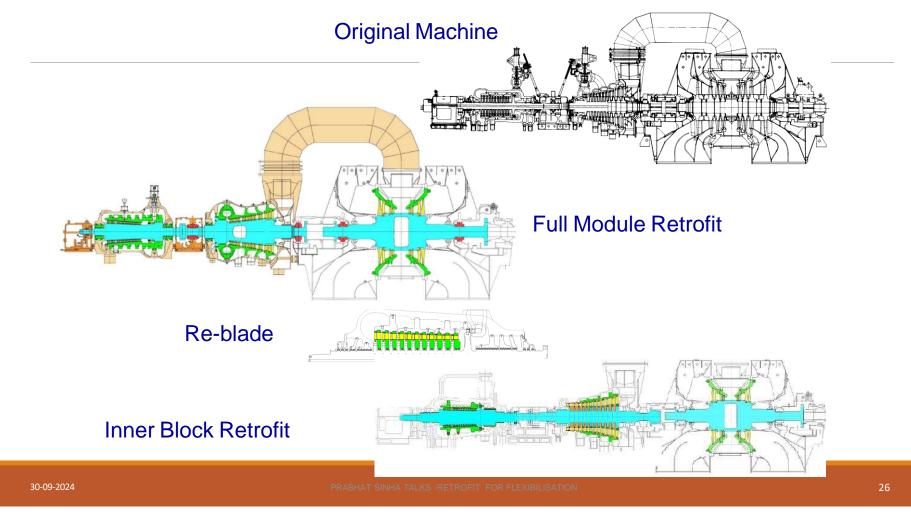
Provides qualitative and quantitative data with recommendations to achieve Sustained & Energy Efficient Generation

30-09-2024

Modus Operandi of CHA

The assignment is carried out on "Task Force" concept. The Task Force comprises of:

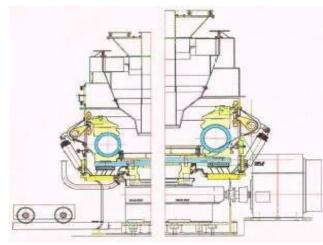
A	Technology Experts	Long experience in Power Station Engineering, operation/ maintenance/ trouble shooting
В	Metallurgical Experts	Expert knowledge of metal behavior under Different conditions of operation.
C	Field working Experts	Long experience in carrying out NDT and other In-situ tests.
D	Core Specialist	Specific system and equipment Specialist
E	Integration Expert	Expertise in power plant O&M to integrate findings and prepare recommendations

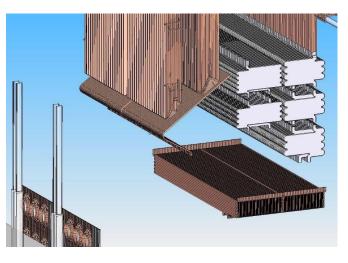

CHA Analysis & Recommendation

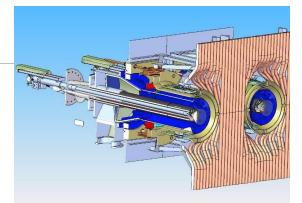
Category I - Immediate Action: Modify or Replace Now Components with high probability of failure leading to serious consequences. Immediate implementation is Vital for useful life extension and/or performance improvement

Category II - Maintenance/Rectification/Refurbishment Components needing Action at the earliest opportunity is essential for useful life extension and/or performance improvement.

Category III - Possible Future Action Repeated bench marking for comparative rate of deterioration is desirable. Action is essential for useful life extension and/or performance improvement.


Turbine Retrofit Examples


Generator Retrofit Examples


Boiler Examples

Mill Capacity Increase retaining existing baseplate, gearbox and motor

Heating Surfaces



Low NOx Burners

30-09-2024

BOILER COMPONENT RETROFIT

Water Wall Panels

Headers

SOFA Panel

Elements

Sphere

PRABHAT SINHA TALKS -RETROFIT FOR FLEXIBILISAT

30-09-2024

Case Study 1 - Recently Completed R&M :

R&M Benefits :

NTPC - RSTPP - Unit 1 -200 MW

Date of commissioning Stage-I -1983-84 Unit # 3 TG Life Extension Work completed in Dec 2021

Major Scope :

- Complete HP IP Module Replacement
- LPT internals Replaced
- Modernizing Control System
- Uprating From 200 MW to 210 MW.
- Guaranteed Turbine Heat Rate: 1935 Kcal/KWh

	Before R&M	After R&M
Particulars		
Capacity (MW)	200	210
Turbine Heat Rate	2101	1919 as per
(Kcal/KWH)		PG test result
Awarded R&M Cost/Unit	122 ₹ Cr	
LE Cost /MW ₹ Cr	0.61	

Case Study 2 - Recently Completed R&M

GSECL WANAKBORI TPS U# 3 (1X210 MW)

Date of commissioning WTPS Unit# 3 –1983-84

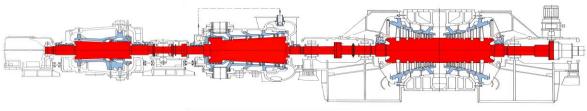
Work completed in Dec 2017 Major Scope :

- Complete HP IP Module Replacement
- LPT internals Replaced
- Guaranteed Turbine Heat Rate: 1950 Kcal/KWh

Benefits :

- · Life extended by 15 years.
- Improved Turbine cycle heat rate by 315.86 Kcal/KWh
- Modernized TG control system with state of art technology.
- Guarantees met: PG Test conducted in February-2018.
- 100% TMCR HR & Output test cleared. No shortfall Observed

Particulars	Before R&M	After R&M
Capacity (MW)	210	210
Turbine Heat Rate (Kcal/KWH)	2260	1944.14
Awarded R&M Cost/Unit	94.00 ₹ Cr	
Per month saving in fuel cost	Rs. 6.3 Crores.	


Case Study Torrent Power 'D' Station

TURBINE : Major Replacements

New HP/IP module with inner casingNew LP module with diaphragmNew design shaft seals

Cross section with new rotors, inner casings, stationary blades, blade carries and steam sealing

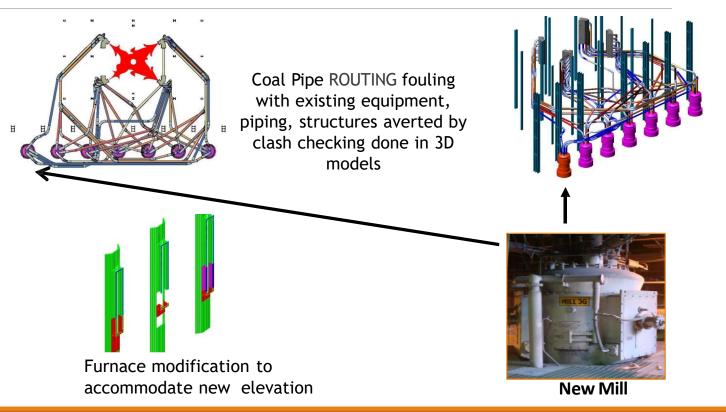
PRABHAT SINHA TALKS - RETROFIT FOR FLEXIBILISATION

In-Situ

Machining

30-09-2024

CASE STUDY 3 - STATION TORRENT SABARMATI 110 MW


PARAMETERS	PRE-R&M	POST-R&M	
Turbine Heat rate		> 18 % reduction in HR	•Higher output with Improved Heat Rate
Output	105 MW	120 MW	 Increased interval between overhaul from approx 25,000 Hrs
Availabilty	90.5% (3 Years)	98% (Avg of 36 Months)	to 100,000 Hrs. •Life extension & Improved
Average PLF	> 83.5 %	> 90% (Avg of 30%)	availability of machine
Uninterrupted Continuous run		Known 185 Days	 Lower emission levels per Kwhr generated Cost of generation lower.
Highest PLF		101 %	

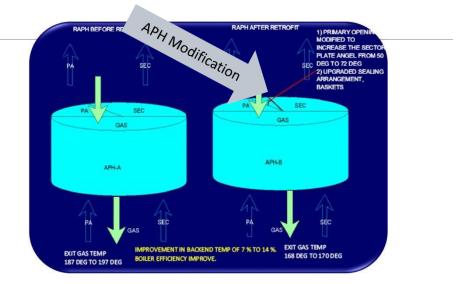
CASE STUDY NTPC TANDA - 4X110 MW

New Mill, Coal Pipe Routing, New Elevation

Retrofit of Boiler and C&I in 4x110 MW Units at NTPC-Tanda

Synopsis: It is 4x110 MW Unit with > 20 years of operation in Unit 1,2& 3 and app 13 years in Unit 4; upgraded by addition of complete milling system and auxiliaries with Improvement in availability and Boiler performance

Case Study :NTPC Tanda - Walk Down: Solutions


New Boiler Control System & Modified Air-Pre Heater :

Introduction of new FSSS system with HEA igniters, oil guns, trip valves & flame scanner system with new pneumatic control valves and power cylinder

New Control System

Ljungstrom Rotary Air-Preheater

Replacement of air heater elements and seals. The sector angle was modified to 72° to accommodate the increased primary air flow required.

CASE STUDY : NTPC TANDA - BENEFITS

KEY ACHIEVEMENTS	BENEFIT TO STATION
RAPH back end GAS EXIT temperature improved by 7 to 14 % with respect to Guaranteed 5 %, improving Boiler	mproved Boiler Performance , Reduce Coal Consumption, and CO2 emission
Wear Part Guarantees exhibited > 25 Running Hrs	Mill Availability Has Improved; Generation Loss averted
New Mill Addition with New Elevation in Boiler Established	Mill Redundancy improved wrt the Poor GCV Coal
Execution duration Reduced by 25-40 % than Schedule by Perfect Plan & Execution.	Saving On Generation Loss of app 75 days combinedly in 3 Unit

PRABHAT SINHA TALKS - RETROFIT FOR FLEXIBILISATION

30-09-2024

Conclusions

R & M/Retrofit Has Huge Potential To Unlock the Hidden Potential for Enabling the Assets for Cyclic operation through :

- ✓ Performance Assessment
- ✓ Optimised integrated boiler, turbine & other equipment solutions for performance and further reductions of emissions
- ✓ Control System Upgrade
- ✓ Component R & M
- \checkmark Digitalisation

All lead to unlocking 'hidden' capacity and efficiency gains within Existing Power Plants

30-09-2024

Thanks !!

30-09-2024

THANKING YOU! ON BEHALF OF

Council of Enviro Excellence