

Date: 01 October 2024

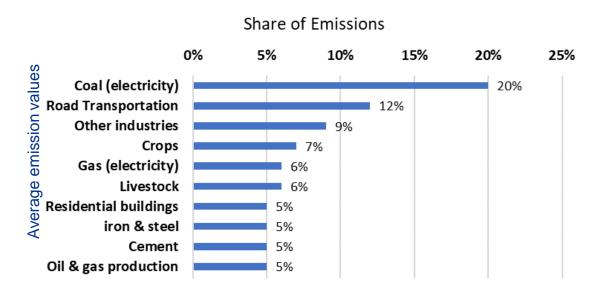
Venue: Hyatt Centric, Janakpuri,

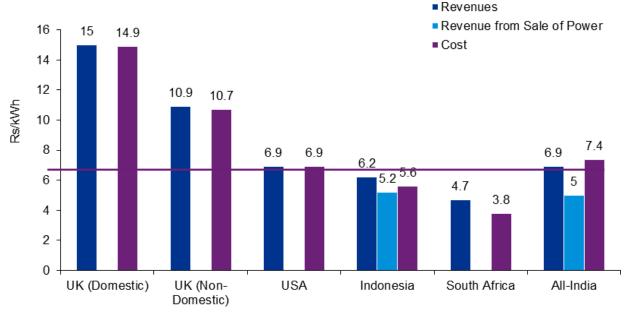
New Delhi

FLEXIBLE OPERATIONS IN THERMAL POWER PLANT

Thermal Power Plants in the era of Renewables

Mr Sandeep Chittora KPMG


Thermal Power Plants in the era of Renewables


Sandeep Chittora

1st October 2024

Thermal Power Plants in World

India is 3rd largest power producer and 2nd largest power capacity by coal

Most efficient thermal power plants of the world

Plant	Country	Salient Technology
Isogo 2	Japan	SNCR, FGD
Guodian Taizhou II, unit 3	China	CCUS, Low NO _x
Maasvlakte Power Plant 3	Netherlands	CCS, Biomass cofiring

Though low cost and abundant coal, India's power generation cost is not cheap compared to world's coal reserve countries, this is due to

- ✓ System inefficiency
- ✓ Less Digital adoption
- ✓ Inflexible IT systems

Therefore, it is not about coal or gas, it is about right choices of technology being implemented

New Build 800 MW Or Modernize 4x200 MW with Actalt OOE BANAM Scolar

Recent bids opened for 2x800 MW at > 7Cr/MW

Total Capex for 800 MW unit = 5900 Cr

EPC includes FGD to reduce SO_x emissions Advanced supercritical parameters estimated net efficiency = 42%

1x800 MW Ultra supercritical plant (Green Field)

4x200 MW modernized with subcritical parameters can yield net efficiency of 35%

To offset CO₂ emissions due to inefficient thermal plant, solar plant needed = 4x100 MW

Capex Requirements: 3000 Cr

Modernizing 4x200 MW units	4 x 130 Cr
FGD installation in 4x200 MW	0.9 x 4 x 200 Cr
Flexibilization of thermal plant	0.4 x 4 x 200 Cr
New build solar plant (4x100)	3.5 x 4 x 100 Cr

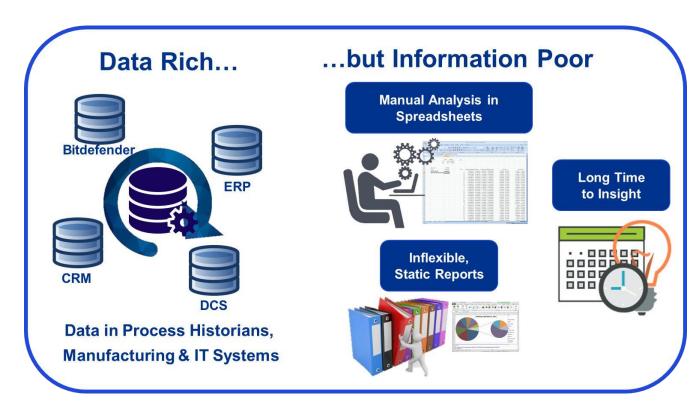
Green

Retrofit

Optimizing Coal Value Chain of thermal energy!

Treatment after firing **Coal Blending** Coal Washing **FGD** Size Distribution Controllable Ash Constituents Moisture Content Moisture Consistency SCR/SNCR Ash Content Ash Content Consistency Calorific Value Calorific Value Consistency **CCUS** Sulfur Content Sulphur Consistency **Beneficiation Plant Control Blending Control** Pit Coal Washing Uncontrollable Ash Fusion Characteristics Free Moisture **Proximate Analysis** Size Distribution Ultimate Analysis Sulphur Ash Elements Hardgrove Grindability Index Crucible Swelling **Proximate Analysis** Sulphur Forms Ash Elements **Toxic Elements Geological Database Control Mine Planning Control**

Cost Centric Fragmented to optimized value chain


Existing	With beneficiation
Fuel/ Mine SpecificLinked mine/single rank/single location	 Unlimited Fuel Flexibility Multiple mines/multiple ranks/multiple countries Blending Ready CHPs
Fuel SourcingLimited ContractsAcquire Mines domestic / overseas	Fuel Sourcing Strategic Multiple tie up for multi location sourcing
O&M Contracts – Guarantee Centric • Efficiency/APC/BMCR	O&M Contracts – Functions Centric Reliable/ Safe/Optimal
Cost Centric Design (fragmented)	Optimal Design (Value Chain)
Product Centric	Service Centric Operations

Data Rich but not inherently intelligent..

Data usage for process optimization is very limited in India

An advanced thermal power plant generates about 1 Terabyte of data every week ... that stays in historians without being used for improving operation and maintenance

Power Generation Use cases using Data

- Thermodynamic Modelling
- Start-Up Analysis
- Tube Leak RCA
- Combustion Dynamics Analysis
- Steam Turbine Bearing clearance validation
- Generator Phase Voltage Anomaly
- Steam Separator Trip Analysis
- Steam Turbine Performance Monitoring
- Transformer Age and Health Analysis
- Pump Performance Analysis
- Unit Trip Deviation
- Digital Twins
- Asset Performance Management

Power Plant 4.0 for flexible, reliable, efficient

and plaistathable es for lift in heat rates for dispatch planning

Drones bases stockyard monitoring/ Hot spot detection. **Incident Inspection** for Boiler Tube Leakages etc.

Automated Predictive
spare parts requirements
to optimize inventory level
and requisitions from
suppliers

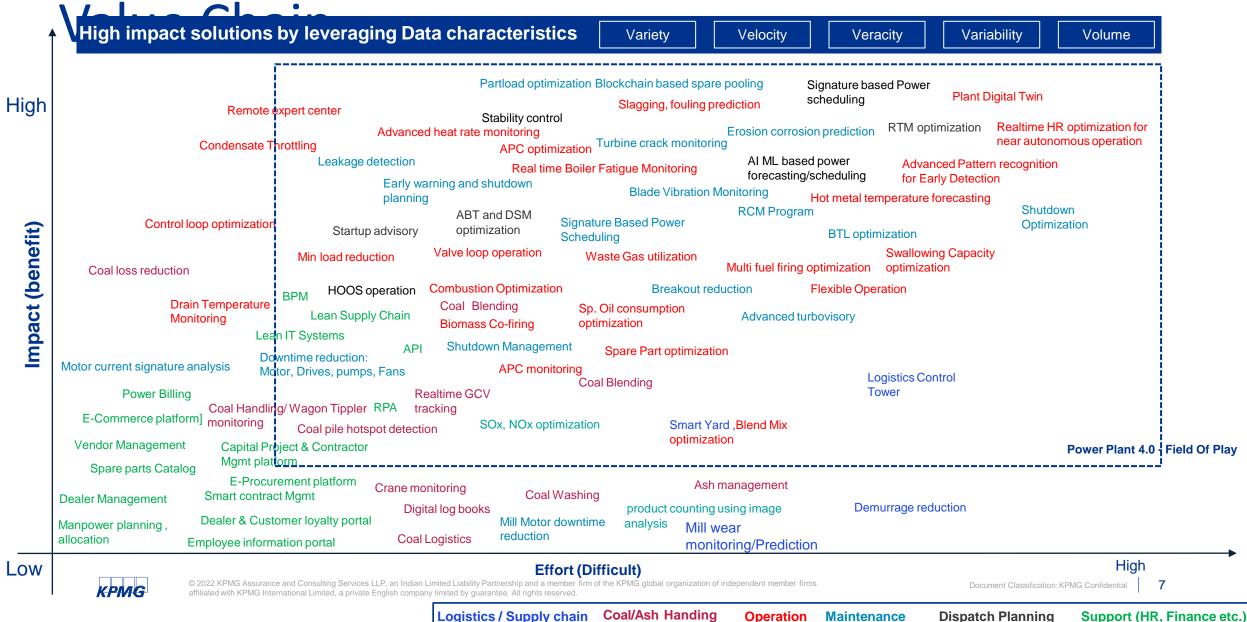
AR / VR for visitors safety and workers training

RPA generated workflow management tools to create efficient orders reducing shutdown time

Co-firing and Realtime fuel requirement and ash
generation predictions

to get ahead in merit order

Advanced Combustion
 optimization to meet SOx,
 NOx, PM and environmental norm


Remote expert centre to optimize real time performance with contextualized dashboards

Digital Twins for continuous heat rate, auxiliary power optimization

Machine Learning models for start up advisory

Power Plant 4.0 IT/OT Interventions Across

Thank You

THANKING YOU! ON BEHALF OF

Council of Enviro Excellence